Product Catalog 2024

Example: $\begin{array}{ll}\text { Pool Length } & =40 \mathrm{ft} . \\ \text { Pool Width } & =20 \mathrm{ft} . \\ \text { Shallow Depth } & =3 \mathrm{ft} . \\ \text { Deep Depth } & =+8 \mathrm{ft} . \\ & \\ \text { Total Depth } & =11 \mathrm{ft} .\end{array}$

Using formula A: $40 \times 20=800$ sq. ft., $800 \times 5.5=4,400$ cubic ft., $4,400 \times 7.5=33,000$ gallons

ENGNEERINGDATA

UNITS OF LENGTH

UNT	INCH	FOOT	YARD	METER
INCH	1.0	.0833	.0278	.0254
FOOT	12.0	1.0	.333	.305
YARD	36.0	3.0	1.0	.9144
METER	39.37	3.281	1.094	1.0

UNITS OF AREA

UNTT	SQUARE INCH	SQUARE FOOT	SQUARE YARD	SQUARE METER
SQUARE INCH	1.0	.00694	.000772	.000645
SQUARE FOOT	144.0	1.0	.1111	.0929
SQUARE YARD	$1,296.0$	9.0	1.0	.836
SQUARE METER	$1,550.0$	10.76	1.196	1.0

UNITS OF VOLUME

UNIT	U.S. GALLON	IMPERIAL GALLON	CUBICFEET	POUNDS OF WATER	CUBICMETERS
U.S. GALLON	1.0	.833	.1337	8.33	.003785
IMPERIAL GALLON	1.2	1.0	.1605	10.0	.004546
CUBIC FEET	7.481	6.232	1.0	62.37	.0283
POUNDS OF WATER	.12	.09996	.0160	1.0	.00045
CUBIC METERS	264.2	220.0	35.31	$2,204.0$	1.0

UNITS OF FLOW
$\left.\begin{array}{cccccc}\hline \text { UNIT } & \text { U.S. G.P.M } & \begin{array}{c}\text { IMPERIAL } \\ \text { G.P.M }\end{array} & \begin{array}{c}\text { CUBICFEET/ } \\ \text { SECOND }\end{array} & \text { CUBICFEET/ HOUR } & \text { LITERS/ } \\ \text { SECOND }\end{array}\right]$

PRESSURE AND EQUIVALENT FEET HEAD OF WATER

Lbs. per Sq. $\mathbf{I n}$.	Feet Head	Lbs. per Sq. In.	Feet Head	Lbs. per Sq. $\mathbf{I n}$.	Feet Head	Lbs. per Sq. In.	Feet Head
1	2.31	20	46.18	120	276.42	225	519.23
2	4.62	25	57.72	125	288.46	250	576.92
3	6.93	30	69.27	130	300.00	275	634.62
4	9.24	40	92.36	140	323.08	300	692.31
5	11.54	50	115.38	150	346.15	325	750.00
6	13.85	60	138.46	160	369.23	350	807.69
7	16.16	70	161.53	170	392.31	375	865.38
8	18.47	80	184.62	180	415.38	400	923.08
9	20.78	90	207.69	190	438.46	500	1153.85
10	23.09	100	230.77	200	461.54	1000	2307.69
15	34.63	110	253.85				

WEIGHT
1 U.S. GALLON OF WATER $=8.33$ LBS.
1 CUBIC FOOT OF WATER $=62.35 \mathrm{LBS}$.
1 KILOGRAM $($ LITRE $)=2.2$ LBS .
1 IMPERIAL GALLON $=10.0$ LBS.

CURRENT CAPACITY (AMPS) OF WIRE*
Three wires in cable, ambient temp. $86^{\circ} \mathrm{F}$

	AMPERES	
WIRE SIZE	COPPER	ALUMNIUM
14	20	-
12	25	20
10	30	25
8	40	30
6	55	40
4	70	55
3	85	65
2	95	75
1	110	85
0	125	100

* Wire size is minimum for amperes listed.

EFFICIENCY	
EFFICIENCY	$\frac{\text { POWER OUTPUT }}{\text { POWER INPUT }}$
MOTOR EFFICIENCY	$\frac{\text { HP OUTPUT }}{\text { K.W. INPUT }}$
PUMP EFFICIENCY	$\frac{\text { G.P.M } \times \text { TOTAL HEAD (F.T.) }}{3960 \times \text { BHP }}$
OVERALL PLANT EFFICIENCY $(O P E)$	$\frac{\text { G.P.M } \times \text { TOTAL HEAD (F.T.) }}{5310 \times \text { K.W. INPUT }}$

Amperage $=$	Watts Volts
Watts $=$	Volts \times Amperage
WHP $=$	Water Horsepower (output HP of pump) $=$ g.p.m \times total head 3960
HP input $($ to motor $)=$	KW input $\times 1.341$
Total Head $=$	Discharge head + Pumping water level (ft)
Discharge Head $=$	Discharge Pressure $(\mathrm{PSI}) \times 2.31 \mathrm{ft}$. of head

Pool heaters can be sized by the volume method for maintenance heating or for spot heating. For many days during the swimming season, the sun maintains a desirable pool temperature of $78-80^{\circ} \mathrm{F}$. and the pool requires no supplemental heating. However, during cooler periods a pool will usually lose $2-4^{\circ}$. per day.
leaving the heater on every day. If you don't use the pool daily, it's more economical to spot heat the pool, say for the weekend. In this case, you could choose a larger heater which will heat the pool faster, and then can be turned off between uses. With either, maintenance heating or spot heating, you need to determine the size of heater to select and the time it will require to heat the pool.

* For Commercial Heaters 500,000 BTU/hr and over please contact factory for sizing.
TIME INMNUTES \qquad min

ETi 400 ASME HIGH EFFICIENCY HEATER MODEL REQUIRED TIME TO TEMPERATURE RISE

${ }^{\circ} \mathrm{F}$ Temperature	Pool Volume (Gallons)									
	10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000	100,000
	Hours to Reach Temperature									
5	1.08	2.17	3.26	4.34	5.43	6.52	7.60	8.69	9.77	10.86
10	2.17	4.34	6.52	8.69	10.86	13.03	15.20	17.38	19.55	21.72
15	3.25	6.52	9.77	13.03	16.29	19.55	22.80	26.06	29.32	35.58

When installing any Pentair or Sta-Rite pool or spa heater, it is very important to have the proper amount of gas supplied to all Pentair or Sta-Rite Heaters for pools. Below, for your information, is a table which will assist you in selecting the correct size of piping for the installation.

When installing any gas appliance, it is very important to have the proper size gas meter and home pressure regulator installed. Once you have selected the correct size heater for the pool or spa, contact the local utility which supplies the gas

4
Natural gas at 1000 BTU per Cubic Foot
Propane Gas at 2500 BTU per Cubic Foot

MODEL	\% 2 in.		3/4 in.		lin.		174 in .		172 in.		2 in.		2-1. 2 in .	
	NAT	PRO												
100 \& 75	20 ft .	50 ft .	50 ft .	150 ft .	150 ft .	$\begin{gathered} 600 \\ \mathrm{ft} . \end{gathered}$	-	-	-	-	-	-	-	-
150	10 ft .	40 ft .	50 ft .	150 ft .	150 ft .	$\begin{gathered} 600 \\ \mathrm{ft} . \end{gathered}$	-	-	-	-	-	-	-	-
200	-	20 ft .	30 ft .	80 ft .	125 ft .	250 ft .	450 ft .	600 ft .	-	-	-	-	-	-
250	-	10 ft .	20 ft .	50 ft .	70 ft .	150 ft .	250 ft .	500 ft .	600 ft .	-	-	-	-	-
300	-	-	10 ft .	30 ft .	50 ft .	100 ft .	200 ft .	350 ft .	400 ft .	600 ft .	-	-	-	-
350	-	-	10 ft .	20 ft .	30 ft .	70 ft .	125 ft .	250 ft .	250 ft .	500 ft .	500 ft .	-	-	-
400	-	-	-	10 ft .	20 ft .	60 ft .	100 ft .	150 ft .	200 ft .	E6t 0 Td	[250.301	Tw 4.5	40 T0	

\square

ENGNEERINGDATA

‘RESIDENTIAL"PROPANE GAS 2 STAGE REGULATION

In many Propane gas line installations, the gas supplier and or installer will utilize a two stage regulation process
usually 10 psi. This higher pressure allows for much longer distance and in a much smaller pipe size. Then, within a short distance from the pool heater, generally around 24 inches, a second regulator, which is the second stage, would be installed and set at the required inlet pressure of the heater.

SEE "GAS PRESSURE REQUREMENT CHART."

Stage One "High Pressure" Gas Pipe Sizing				Stage Two "	Pressure"	Pipe Sizing
10PSI @ 2500 BTUPer CU. FT.				Stage 2 set at $\mathbf{4} \mathbf{i n}$. W.C.		
MAXIMUM EQUIVALENT PIPE LENGTH				MAXIMUM EQUIVALENT PIPE LENGTH		
Model	Oto 50 Feet	50 to 100 Feet	100to 150 Feet	Mbdel	Oto 10 Feet	10to 20 Feet
75 through 400	$1 / 2 \mathrm{in}$.	$1 / 2 \mathrm{in}$.	$1 / 2 \mathrm{in}$.	75 through 400	$3 / 4 \mathrm{in}$.	$3 / 4 \mathrm{in}$.

‘RESIDENTIAL"NATURAL GAS 2 STAGE REGULATION

AIR BLOWER SIZING GUIDE

BLOWER MOTORSIZE	VOLTS	AMPS	MAXIMUMINCHES OF WATER DEPTH	J ETS ONLY RECCMMENDED NUMBEROFJ ETS
1 HP	120 V	6.6	35 in.	$5-10$
$1-1 / 2 \mathrm{HP}$	120 V	7.4	45 in.	$9-15$
2 HP	120 V	9.3	55 in.	

BLOWERSIZNGFORMULA

Measure total depth of water in spa (not total spa depth)

Add - 1 in . water for each 10 ft . of 2 in . air pipe

Add $1 / 2$ in. water for each 90 deg. 2 in. elbow
Compare your total with maximum inches of water column and select that size or the next size higher blower than your total, in your selected voltage.
approximately 1.6 sq. in. total plus or minus . 5

$1 / 8$ in. hole $=.0123$ sq. in.	$3 / 16$ in. hole $=.0276$ sq. in.
$5 / 32$ in. hole $=.0192$ sq. in.	$1 / 4$ in. hole $=.0491$ sq. in.

